
~ Pergamon 
Int. J. Heat Mass Transfer. Vol. 39, No. 7, pp. 1439-1452, 1996 

Copyright © 1996 Elsevier Science Ltd 
Printed in Great Britain. All rights reserved 

0017-9310/96 $15.00+0.00 

0017-9310(95)00189-1 

Transient natural convection heat transfer 
between concentric and vertically eccentric 

spheres 
CHENG PING CHIU and WEN RUEY CHEN 

Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan, 
Republic of China 

(Received 4 November 1994 and in final form 23 March 1995) 

Abstract--Transient analysis has been investigated numerically to determine heat transfer by natural 
convection between concentric and vertically eccentric spheres with isothermal boundary conditions. The 
inner and outer spheres were heated and cooled in a step change of temperature. The governing equations, 
in terms of vorticity, stream function and temperature were expressed in a radial coordinate transformation 
coordinate system. The alternating direction implicit method and the successive over-relaxation techniques 
were applied to solve the finite difference form of governing equations. A physical model was introduced, 
which accounts for the effects of fluid buoyancy as well as eccentricity of the outer sphere. Transient 
solutions of the entire flow field were obtained for a range of Rayleigh numbers (103 < Ra < 105), for a 
Prandtl number of 0.7 and a radius ratio of 2.0, with the outer sphere near the top and bottom of the inner 
sphere (e = -t 0.625). Results of the parametric study conducted further reveal that the heat and flow fields 
are primaril) dependent on the Rayleigh number and on the eccentricity of the annulus. Comparisons are 
attempted between the present computations and the results available in those of previous experimental 
and numerical studies. 

INTRODUCTION 

The problem of natural convection heat transfer in the 
annulus between two concentric and eccentric spheres 
has received considerable attention from researchers 
in many diverse fields of applications, such problems 
commonly occur within the geophysical fields, solar 
energy collectors, thermal storage systems as well as 
nuclear reactor design, and many other practical situ- 
ations. As a result, extensive experimental and theor- 
etical works dealing with flow and associated heat 
transfer characteri,;tics of natural convection in annuli 
between two isothermal concentric spheres have been 
reported in the literature. Comprehensive reviews [1- 
10] on natural convection in such configuration are 
available, and there is no need to repeat them. 
However, most of the studies are concerned with the 
steady-state aspecl: of the problem, thus knowledge 
about transient thermal convection between two 
spheres is limited. A proper understanding of transient 
phenomena is essential to the design and operation 
of various engineering applications of thermal fluid 
systems, such as gyroscopes and energy systems 
including nuclear :~eactors. This would be the reason 
for the fact that studies on natural convection between 
concentric sphere,; have increased recently [11 16], 
Fujii et al. [11] obtained a numerical solution of tran- 
sient laminar free convection between two concentric 
spheres at Prandtl number of 0.7 and Rayleigh num- 
ber of 100. Later, they extended the problem for large 

Prandtl number, Pr = 0.7-100 [12]. Ozoe et al. [13] 
solved the three-dimensional analysis of natural con- 
vection in a spherical annulus between two concentric 
spheres, under nonsymetrical thermal boundary con- 
ditions, for Ra = 500 and Pr = 1.0. Ozoe et al. [14] 
and Mochimaru [! 5] presented transient natural con- 
vection in a spherical/hemispherical enclosure after a 
step change in the wall temperature experimentally 
and numerically. Chu and Lee [16] computed a 
numerical solution for transient natural convection 
between concentric spheres of various radius ratio 
with a large range of Rayleigh number Ra = 103- 
5 × 105; little attention has been paid to natural con- 
vection in eccentric spheres of engineering interest. 

The present paper is motivated by interest in dem- 
onstrating the effects of eccentricity as well as buoy- 
ancy in the transient natural convection flow between 
two vertical eccentric spheres. A finite difference solu- 
tion is obtained for the governing equations in terms 
of stream function, vorticity and temperature in a 
spherical polar coordinate system. The effect of eccen- 
tricity and Rayleigh number on the fluid flow and heat 
transfer characteristics are discussed. It may be noted 
that for concentric spheres (e = 0), the governing 
equations in the present paper can be deduced to the 
equations reported by Chu and Lee [16]. The details 
of the method are described in the next section. We 
wish to point out that our formulation is more general 
for various natural convection problems involving 
concentric and vertically eccentric spheres. 
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NOMENCLATURE 

Cp specific heat at constant pressure 
e vertical eccentricity 
g local gravitational acceleration 
h heat transfer coefficient 
k thermal conductivity 
L annular gap, ro - r~ 
Nu local Nusselt number, hL/k 
Nu average Nusselt number, hL/k 
P dimensionless gauge pressure, 

( P -  Po)L Z/pct 2 
P absolute pressure 
Po surrounding pressure 
Pr Prandtl number, v/ct 
r dimensionless coordinate, rTL 

radial coordinate 
R dimensionless radial profile of outer 

sphere, R/ L 
radial profile of outer sphere 

Ra Rayleigh number, (gflATL3)/(vu) 
R* ratio of outer and inner radius ratio, 

ro/ri 
t time 
T dimensionless temperature, 

(?- ?o)/(~- To) 
7 ~ temperature 
v velocity 

V dimensionless velocity, vL/~. 

Greek symbols 
thermal diffusivity 

fl thermal expansion coefficient 
A~ temperature difference between 

spheres, ~ -  To 
e dimensionless vertical eccentricity, elL 
~/ radial coordinate in transformed 

plane, ( r -  ri)/(ro - ri) 
0 dimensionless angular coordinate, O/n 
0 angular coordinate 
0* angular position at vortex center 
v kinematic viscosity 
p fluid density 

dimensionless time, tct/L 2 
¢ dimensionless stream function, (J/~L 

stream function in spherical 
coordinates 

~o dimensionless vorticity, UoL2/o~ 
o3 vorticity. 

Subscripts 
i, o inner and outer 
max maximum 
rain minimum. 

MATHEMATIC FORMULATION 

The geometric configuration of the physical system 
is a concentric or vertically eccentric arrangement of 
two circular spheres of radii ro and r~ located at O' and 
O, respectively. The eccentricity of the outer sphere is 
measured by the distance e. If the outer sphere is 
placed above the central position, e has a positive 
value, otherwise e is negative. For a natural convective 
heat transfer problem, the largest heat transfer vari- 
ation due to eccentricity occurs when the direction of 

is aligned with the gravitational direction. Therefore, 
this study focuses on the problem that e is vertically 
shifted. 

The space between the inner and outer spheres is 
filled by the viscous and incompressible Newtonian 
fluid. Initially, the annulus is at a uniform temperature 
To and a quiescent state is assumed, while the tem- 
perature of the inner sphere is suddenly changed to a 
higher temperature T~ and the outer sphere is main- 
tained at To. To formulate the problem, it is assumed 
that: (1) the flow within the annulus is laminar; (2) all 
fluid properties, are taken to be constant, except for 
the density variation with temperature in the buoy- 
ancy term, i.e. the Boussinesq approximation is valid; 
(3) the flow is symmetrical about vertical axis parallel 
to the line of gravity acceleration even produces the 
multi-cellular flow, furthermore; (4) viscous dis- 
sipation and radiation effect can be neglected. 

A spherical polar coordinate system (r, 0, ~p) was 
chosen as shown in Fig. 1. To deal with the numerical 
formulation associated with the complex physical 
domain of the vertical eccentric annulus, a radial coor- 
dinate transformation is adopted to map the eccentric 
annular gap into a unit sphere. The outer sphere radius 
r = R(O) is transformed into the unit sphere q = 1, 
while the inner sphere radius r = r~ is transformed into 
the pole q = 0 [17]. 

This transformation is obtained by defining a new 

t ,/ 

g 

Fig. 1. Coordinate system for the spherical annulus. 
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radial  coordinate as 

r - -  r i 
(1) q = R(O) -- ri" 

Where R(O) denotes variable dimensionless profile 
of the outer sphere measured from the center of the 
inner sphere, which is symmetric with respect to the 
vertical axis in any angular  posit ion of ~o-direction 
and is expressed by 

R(O) = x / r  2 - e 2 sin 0 + e cos 0. (2) 

The governing equations for the two-dimensional 
problem fluid in the dimensionless term can be written 
a s  

Vorticity transport equation 

ao9 l !(a.xr63o o~ Do oo9] 
& +~tr2sin(n0) < k ~ ) L ~  D0 63o 

F/1 D. _r~cot(nO)~r)~_t# 1 aOl "1 +[ t ;~  D. 63+ + ; ~ £ I  

1 63~ 
= Pr[Vi r2 sin ~<t.0)l-log+ Pr" Ra[(sin(nO)-ff- 

cos (nO) Dr/'~_/~T cos (nO) DT] + - -  + - -  
nr D0] D~/ nr ~ " 

Stream function equation 

l)i~b = o9 r sin (nO). 

Energy equation 

aT 1 aq(a~ar 
63"C q- 7zr 2 sin (~0) Dr D0 

(3) 

(4) 

(5) 

Pressure equation 

rDqVIDVrV ±(Pro 7 
-V2P=tor  ) t ~ )  + 7~2r2 \  630 ] 

+n2r2\630)\ DO ) ( ~ )  

l {Drl~ 2 (DVo~ 2 
+ ~ tgO) k a. ) 

2 ID,A/a vA  fD vA 

( 63,,~ (D.~ p~o~ (D~ 4 
+ ~r t,~:) t~) t,~F) kN) 

2V, f,?Vo'x 2VrfDn\iaVo'X 
+ + 

2Vof63n\/DVo\ 2V~ 

t Jtw) + 7 
2 cot (nO) cot 2 (n0) V0 2 

+ - -  VrVo~ 
r 2 r 2 

Ra )T sin (n0) (Dr/'/ 
- -  Pr" [L ~ iN) 

[63rl\qDT sin(nO) OT} 
-c°s(n°)i~-0)]r. + .r (6) 

where 

Dr/ 1 
cTr R -- r i 

630 R--ri O0 

(7) 

(8) 

_1 70) D2rl R- r i (  rl D2R 2 Drl 
Do 2 - ~ + 

(9) 

(10) 

r 2 ['63rI~7 0 2 +P 1 ] 0 2 

L ~  t~)J~-~ L ~ J ~  ~ 
+ [n_~rZ (02r/~ c°t  ("0) (Dt/'~7 0 

[cot  (nO) l 0 
- L~JgO 

(11) 

The associated initial and boundary  conditions for 
the problem considered are for z < 0 

aq, ao o9 ~k - -  = T = 0everywhere, (12) 
0q 630 

fo r z  > 0 
a t e / =  0 

~ b = ~ = O  T = l  o ) - - -  
r i sin (~0) \ ~ r J  or/z 
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ap -=- pr 
af7 I( cot (no) i a. 

-CU+-- 
r r a0 > 

+ Pr * Ra * Tcos (~0) 
I 

(13) 

atq= 1 

i?P 
- = - Pr 
aq 

[cot (~0) cos (6) -sin (S)] f 

cos (6) am 
+rz+ 

where 

+Pr*Ra*qcos(nO-b)] (14) 

6 = sin-’ 
[ 1 t sin (7~0) (15) 

atQ=O, 1, 

aT ap 
*=~=-@=z=O. (16) 

From the above formulation, the governing par- 
ameters for the present problem are thus the Rayleigh 
number Ra, the Prandtl number Pr, the radius ratio 
R* and the eccentricity E. 

The local and average Nusselt number at inner and 
outer radii are defined as 

NUMERICAL METHOD 

To solve the problem, the governing equations as 
well as initial and boundary conditions were dis- 
cretized by the finite difference method. Equations 
(3)-(5) were discretized with time derivative terms 
approximated by forward difference and the spatial 
derivative terms approximated by central difference. 
Derivatives at the boundaries were approximated by 
three-point forward or backward difference. The finite 
difference equation for the time-dependent vorticity 
transport and energy equations were solved by 
employing the alternating direction implicit (ADI) 
finite difference technique [ 181, while the finite differ- 
ence equation for stream function was solved by the 
successive line relaxation method (SOR). To see the 
effect of mesh size on the numerical result, com- 
putations for a concentric annulus were carried out 
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NW 

u 

IO 

0 

Fig. 2. Calculated local Nusselt numbers at different grid 
sizes (R* = 2.0, Pr = 0.7, Ra = 1.4 x 10“). 

using four different mesh sizes, the resulting Nusselt 
numbers are presented in Fig. 2. The local Nusselt 
numbers, obtained from four different mesh sizes, are 
similar to each other, except the local value of outer 
sphere at f3 = 0” is sensitive to the noding size, and the 
result seems to converge at 41 x 41. In order to solve 
the computation effort, the results presented in this 
article are all obtained by using the grid size of 41 x 41. 
Numerical test calculations were also performed for 
different time steps. Two different time steps depend- 
ing on the geometry have been used for the cal- 
culations: 1 x 10m4 for E = 0.0 and 5 x lo-’ for 
E = f0.625. 

The solution was considered convergent when the 
relative error between the new and old values of the 
field variables @ during every time step, must be less 
than a prescribed criterion (10-4), where CD represents 
w, +, T and P. 

(19) 

Further, the convergence of the steady-state solu- 
tion was verified by checking the relative error 
between the present and next time step values of all 
field variables for inner and outer spheres within 
0.1 %, as shown in the following: 

where the superscripts n and (n + 1) indicate the nth 
and (n+ 1)th time step, respectively. 

RESULTS AND DISCUSSION 

The accuracy of the numerical solution is verified 
by comparing the calculated results with the measured 
data and other calculated results. Figure 3 shows the 
comparison between the calculated streamlines by the 
authors and the measured streamlines presented in 
Yin et al. [3]. Figure 4 shows the streamlines and 
isotherms in the present study and the corresponding 
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1 

(a) (b) 
Fig. 3. Comparison of  streamlines for R * =  2.17, Pr = 0.7 and Ra = 7.392 x 105: (a) present results; 

(b) experiment results [3]. 

(a) (b) 
Fig. 4. Comparisons of streamlines (left) and isotherms (right) for R* = 2.0, Pr = 0.7 and Ra = 5.0 x 104: 

(a) present results; (b) numerical results [7]. 

m 

Table 1. Comparison of  the calculated average Nusselt number Nu, 
maximum value of  stream function ~%ax and angular position of  vortex 
center 0* at steady-state, as functions of  R* = 2.0, Pr = 0.7 and Ra = 10 ~ 

Nu ~Omax O* (°) 

Present results 1.1021 3.236 81 
Mack and Hardee [4] 1.1200 3.210 77 
Astill et al. [5] 1.1200 3.490 79 
Singh and Chen [6] 1.1010 - -  
Garg [10] 1.1006 - -  - -  
Chu and Lee [16] 1.1099 3.209 81 

ca lcula ted  results  o f  Ca l t ag i rone  et al. [7]. Table  1 
c o m p a r e s  the  ca lcu la ted  average  Nusse l t  n u m b e r  by 
the  p re sen t  s tudy  and  by  earl ier  worke r s  [4-6, 10, 16]. 

F igure  5a s h o w s  a series o f  t rans ien t  s t reaml ine  

a n d  i so t he rm  conf igura t ions  for  rad ius  ra t io  o f  2.0, 
P r a n d t l  n u m b e r  o f  0.7 a n d  Rayle igh  n u m b e r  o f  10 4. 
F igure  5b p resen t s  a c o r r e s p o n d i n g  series o f  Ray le igh  
n u m b e r s  o f  10 5 . This  series o f  resul ts  is des igned  to 
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"r = 0 . 0 2 5 0  

0 ° = 81 ° 

~ l t .~x=6 .854  

"C = 0 . 0 5 0 0  

0 ° = 6 3  ° 

~lt i ~  = 1 4 . 3 9 7  

1: = 0 . 1 0 0 0  

0"  = 5 8 . 5  ° 

~ll.,,,x = 1 8 . 0 5 4  

"C s = 0 . 8 7 3 0  

0"  = 6 7 . 5  ° 

~ll,,~ax = 1 7 . 3 9 4  

/ 
/ 
f 

Ca) (b) 

1 : = 0 . 0 0 5 0  

0 "  = 81 ° 

~It,,,a.~=8.406 

X = 0 . 0 2 0 0  

0"  = 3 6  ° 

~lt,,,.lx=53.332 

T = 0 . 0 8 0 0  

0" = 4 9 . 5  ° 

~It,,,,.~038.701 

1: s = 0 . 6 8 1 3  

0* = 54  ° 

LI1,,.1.~=35.924 

Fig. 5. I so therms (left) and streamlines (right), for R* = 2.0, Pr = 0.7 and e = 0.0 at different time steps: 
(a) Ra = 1.0 × 104; (b) Ra = 1.0 x 105. 
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demonstrate the effect of Rayleigh number on the 
heat and fluid flow patterns in the concentric annulus. 
Because the problem is symmetric to the axis, each 
annulus contains enly a half isotherm on the left and 
a half streamline en the right. Since the inner sphere 
is kept hotter, the hot fluid near the inner sphere rises 
upward due to thermal expansion. The uprising plume 
is then cooled down by the colder fluid near the upper 
part of outer sphere. The colder and denser fluid will 
eventually flow downward along the surface of the 
outer sphere. As time proceeds, from Fig. 5a, it is 
found that the position of the vortex center of the eddy 
first moves upward and then slowly moves downward 
along the annular space, while the maximum value of 
the stream function first increases and then slowly 
decreases. Until the time when steady state is reached 
the maximum value of the stream function 
~bmax = 17.394 and the angular position of the vortex 
center of the crescent-shape lies at 0* = 67.5 ° from 
the upper vertical line symmetry about midgap 
position. At Ra = 105, as shown in Fig. 5b, the fluid 
motion becomes stronger, as indicated by the 
increased absolute value of the stream function, and 
the vortex center of the eddy shifts upward. Exam- 
ination of the isoth erm patterns also reveals that lami- 
nar convection wa:s the dominant mode of heat trans- 
fer, on the contrary, the pseudoconduction heat 
transfer regime which existed appeared in Fig. 5a. 
This behavior was also obtained by Bishop et al. [1] 
and Chu [16]. Next, the isotherms and streamlines for 
the eccentric configurations considered in this study 
will be examined. Figures 6 and 7 illustrate the tran- 
sient streamlines and isotherms distribution at differ- 
ent Ra for positNe and negative eccentricity, respec- 
tively. For positive eccentric geometry (Fig. 6) it is 
evident that the convective flows are both larger and 
stronger than for the concentric spheres. Within such 
a favorable configuration for convective motion, the 
qualitative features of streamlines and isotherms dis- 
tribution depicted previously for the concentric 
geometry are observed to be further pronounced. 

At high Ra, the expanse of the heat-receiving region 
on the outer wall is considerably extended for the 
positive eccentric arrangement, in contrast to the con- 
centric spheres. Or~ the other hand, the negative eccen- 
tric geometry provides the least favored circumstance 
for the development of natural convection. Both the 
size and strength of the fluid are markedly reduced, 
as shown in Fig. 7a. Moreover, Fig. 7b shows an anti- 
clockwise rotating secondary cell in the top of the 
annulus as time sLep at z = 0.08, while the primary 
central eddy is clockwise. As the time step arrives at 
steady state, we firLd that a multicell flow is predicted, 
in which two secondary cells having a sense of rotation 
opposite to that of the primary central eddy are 
formed. One of these cells was found near the top of 
the inner-sphere, and the other at the bottom of the 
outer-sphere. These phenomena were similarly stated 
by Caltagirone [7], who expressed that the multi- 

cellular flows occur at a critical Rayleigh number for 
the radius ratio 2.0 of 5 × 104. 

Figure 8 presents the influence of the Rayleigh num- 
ber on the pressure distributions within the concentric 
annulus at different time steps. As the Rayleigh num- 
ber is increased from 10 4 t o  10 5 , the pressure dis- 
tributions are not significantly changed. With a fur- 
ther increase of time, it can obviously be seen from 
the figure that the bulk fluid, step wise-heated, pro- 
duces no apparent effect on the isobars distributions. 
The maximum pressure is always located in the upper 
region of the gap. 

Next, the isobars for the eccentric configurations 
considered in this study are also examined. Figure 9a, 
b illustrates the pressure distributions at different time 
steps and for positive and negative eccentricity, 
respectively. For eccentric geometries, it is evident 
that the pressure distributions are rather insensitive to 
the investigated Rayleigh number and time steps. 

The transient conductive temperature distribution 
vs radial position, is shown in Fig. 10. The results of 
the steady-state analysis are compared with those of 
Mack and Hardee [4] and Astill et al. [5]. The com- 
parison is obtained and in excellent agreement. 

As a result of the difference in streamlines and iso- 
therms, the local Nusselt number also behaved differ- 
ently. Figures 11 and 12 depict the transient behavior 
of the local Nusselt number along the outer sphere of 
three geometries, considered two values of Ra. Exam- 
ining Fig. l ib ,  c, and Fig. 12b, c it appears that the 
local Nusselt number on the outer surface has a peak 
near the top of the annulus at different time steps for 
the concentric and the positive eccentric annulus. The 
peak value increases with an increase in Rayleigh 
number. For negative eccentricity in Figs. 1 la and 
12a, the local Nusselt numbers on the inner and outer 
surface have minimum and maximum values, respec- 
tively. The generation and development with time of 
the maximum and minimum values will be oscillated 
near 0 = 10°-65 °. This implies that the second flow 
taking place on the top of the annulus is also weak, 
although the Rayleigh number was increased to 105. 
This lead to the fluid at the narrow gap is an unfav- 
orable convection motion. 

Finally, the circumferentially average Nusselt num- 
bers obtained in the present study are given in Table 
2, for various Rayleigh numbers in the three annular 
geometries under consideration. Also included in 
Table 2 are the results based on the correlation for 
the concentric geometry reported in ref. [10], which 
compare favorably with the results obtained in the 
present study. It can be concluded that the average 
Nusselt number across the annulus is mainly depen- 
dent on the Rayleigh number and eccentricity. 
Accordingly, the present results can be correlated via 
a least square regression analysis in the form 

m 

Nu = CRa  m (21) 

for Pr = 0.7 and R* = 2.0, where the constant C and 
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ql , , , ,x=46.742 
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0* = 67 .5  ° 

w,,, , .~=49.060 

(a) (b) 
Fig.  6. I s o t h e r m s  (left) a n d  s t reaml ines  ( r ight) ,  fo r  R *  = 2.0, Pr = 0.7 a n d  e = 0 .625 a t  d i f ferent  t ime steps: 

(a) Ra = 1.0 × 104; (b) Ra = 1.0 x l05. 
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(a) (b) 
Fig. 7. Iso therms (left) and streamlines (r ight) ,  fo r  R *  = 2.0, Pr  = 0.7 and e = - 0 . 6 2 5  at d i f ferent  t ime 

steps: (a) Ra = 1.0 x 104; (b) Ra = 1.0 × ]05. 
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T =0.0250 
P~----5.373E9 
P~=-5.189E9 

"r=0.0500 
P~,=-5.383D 
P,=--5.200E9 

7" =0.1000 
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7"=0.0200 
P~=-5.436E9 
P~=-5.248E9 

(a) (b) 
Fig. 8. Isobars for R * =  2.0, P r = 0 . 7  and e = 0 . 0  at different time steps: (a) R a =  1.0x 104; 

(b) Ra = 1.0 x 105. 
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T, =0.9213 
Pm~=-2.945E12 
P,~=--2.B48EI2 

Fig. 9. I sobars  for R * =  2.0, P r =  0.7 and  R a =  1 .0x  105 at different t ime steps: (a) e = 0.625; 
(b) g = - 0 . 6 2 5 .  
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Fig. l 0. Transient conduction temperature vs radial position 
for R* = 2.0, Pr = 0.7 and e = 0.0. 

exponents m are listed in Table 3 for three con- 
figurations considered here. 

In Fig. 13, the average Nusselt number is also plot- 
ted vs the Rayleigh number. The curve corresponding 
to e = 0.0 represents the concentric case. For  compari-  
son, experimental data of  Bishop et al. [1] and Scanlan 
et al. [2], and the numerical computat ion results of  
Chu and Lee [16] are also plotted. We observed that 
these results agree fairly well. Moreover,  it reveals 
that the positive eccentricity can improve the average 
Nusselt number, but the negative eccentricity may not 
promote the conduction effect. 
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Fig. 11. Transient variation of local Nusselt numbers for R* =2.0, P r=0 .7  and R a =  1.4x 104: 

(a) e = -0.625; (b) e = 0.0; (c) e = 0.625. 
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Tab le  2. Average  Nusse l t  n u m b e r  
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Nu for Ra 

10 3 5 × 10 3 10 4 5 × 10 4 105 5 × 105 

0.625 2.4452 1.8469 1.9853 2.7567 3.3983 - -  
0.000 1.1021 1.7275 1.9110 2.7282 3.3555 4.8657 

(1.1006)* (1.7393)* (2.7761)* 
- 0 . 6 2 5  1.1948 1.6621 1.7582 2.4703 3.1060 - -  

* F r o m  ref. [10]. 
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Fig. 12. Trans ien t  va r i a t ion  of  local  Nusse l t  numbe r s  for R* = 2.0, Pr = 0.7 and  Ra = 1.4× 105: 

(a) e = - 0 . 6 2 5 ;  (b) e = 0.0; (c) ~ = 0.625. 
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Table 3. Empirical constants and deviations for equation 
(21) 

Maximum 
deviation 

e C m Ra (%) 

0.625 0.291 0.211 103105 3.52 
0.000 0.210 0.240 103-5 x 105 1.72 

-0.625 0.267 0.209 103-105 5.33 

1.0 
...... Chu and Lee [16]. 
- - Scanlan et al. 12J 

0.9 Bishop et al. [lJ 
present results, Eq. (21) 

0.8 

0.7 

0.6 ""' / :  
~ l i l y  

o. ,   _-o.ooo \ 

"~ 0.3 0.2 e = 0 . 6 ~ / / Y /  / 

0.1 / /  // 
/ 

0 . 0  - -  ~ I ~ I ~ I J 

3 4 5 6 

l o g ( R a )  

Fig. 13. Variation of Nusselt number with Raleigh number 
at steady state for Pr = 0.7 and R* = 2.0. 

CONCLUDING REMARKS 

The t ransient  na tura l  convect ion in concentr ic  and  
vertical-axially eccentric spheres with isothermal  
bounda ry  condi t ions  has been analyzed numerical ly 
by a finite difference method.  The t ransient  behaviors  
of  the heat  and  fluid flows in the annul i  have  been 
vividly visualized by means  of  con tou r  maps  of  iso- 
therms and  streamlines. The numerical  results 
obta ined  fur ther  indicated tha t  heat  and  fluid flow 
pat terns  in the annul i  are primari ly dependent  on  the 
Rayleigh n u m b e r  and  the eccentricity. D a t a  were plot- 
ted in the form of  Nu vs Ra on a log- log plot  to 
reveal a s traight  line relat ionship.  The average Nussel t  
n u m b e r  increases with  the Rayleigh n u m b e r  in each 
eccentricity displacement.  The positive eccentric 
geometry can enhance  convective heat  t ransfer  rates, 
bu t  the negative eccentric geometry provides the least 
favored c i rcumstance for the development  of  na tura l  
convect ion between two spheres in the annulus.  A 
multicellular flow region begins to develop for nega- 
tive eccentric geometry when Ra = 105. 
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